Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.764
Filtrar
1.
FASEB J ; 38(8): e23590, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38656553

RESUMEN

Studies have suggested that microglial IL-6 modulates inflammatory pain; however, the exact mechanism of action remains unclear. We therefore hypothesized that PKCε and MEG2 competitively bind to STAT3 and contribute to IL-6-mediated microglial hyperalgesia during inflammatory pain. Freund's complete adjuvant (FCA) and lipopolysaccharide (LPS) were used to induce hyperalgesia model mice and microglial inflammation. Mechanical allodynia was evaluated using von Frey tests in vivo. The interaction among PKCε, MEG2, and STAT3 was determined using ELISA and immunoprecipitation assay in vitro. The PKCε, MEG2, t-STAT3, pSTAT3Tyr705, pSTAT3Ser727, IL-6, GLUT3, and TREM2 were assessed by Western blot. IL-6 promoter activity and IL-6 concentration were examined using dual luciferase assays and ELISA. Overexpression of PKCε and MEG2 promoted and attenuated inflammatory pain, accompanied by an increase and decrease in IL-6 expression, respectively. PKCε displayed a stronger binding ability to STAT3 when competing with MEG2. STAT3Ser727 phosphorylation increased STAT3 interaction with both PKCε and MEG2. Moreover, LPS increased PKCε, MEG2, pSTAT3Tyr705, pSTAT3Ser727, IL-6, and GLUT3 levels and decreased TREM2 during microglia inflammation. IL-6 promoter activity was enhanced or inhibited by PKCε or MEG2 in the presence of STAT3 and LPS stimulation, respectively. In microglia, overexpression of PKCε and/or MEG2 resulted in the elevation of tSTAT3, pSTAT3Tyr705, pSTAT3Ser727, IL-6, and TREM2, and the reduction of GLUT3. PKCε is more potent than MEG2 when competitively binding to STAT3, displaying dual modulatory effects of IL-6 production, thus regulating the GLUT3 and TREM2 in microglia during inflammatory pain sensation.


Asunto(s)
Hiperalgesia , Inflamación , Interleucina-6 , Microglía , Proteína Quinasa C-epsilon , Factor de Transcripción STAT3 , Animales , Factor de Transcripción STAT3/metabolismo , Microglía/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Proteína Quinasa C-epsilon/genética , Ratones , Interleucina-6/metabolismo , Interleucina-6/genética , Inflamación/metabolismo , Hiperalgesia/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones Endogámicos C57BL , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Lipopolisacáridos/toxicidad , Lipopolisacáridos/farmacología , Unión Proteica , Fosforilación , Dolor/metabolismo , Adyuvante de Freund
2.
Mol Neurodegener ; 19(1): 37, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38654375

RESUMEN

BACKGROUND: Microglia play important roles in maintaining brain homeostasis and neurodegeneration. The discovery of genetic variants in genes predominately or exclusively expressed in myeloid cells, such as Apolipoprotein E (APOE) and triggering receptor expressed on myeloid cells 2 (TREM2), as the strongest risk factors for Alzheimer's disease (AD) highlights the importance of microglial biology in the brain. The sequence, structure and function of several microglial proteins are poorly conserved across species, which has hampered the development of strategies aiming to modulate the expression of specific microglial genes. One way to target APOE and TREM2 is to modulate their expression using antisense oligonucleotides (ASOs). METHODS: In this study, we identified, produced, and tested novel, selective and potent ASOs for human APOE and TREM2. We used a combination of in vitro iPSC-microglia models, as well as microglial xenotransplanted mice to provide proof of activity in human microglial in vivo. RESULTS: We proved their efficacy in human iPSC microglia in vitro, as well as their pharmacological activity in vivo in a xenografted microglia model. We demonstrate ASOs targeting human microglia can modify their transcriptional profile and their response to amyloid-ß plaques in vivo in a model of AD. CONCLUSIONS: This study is the first proof-of-concept that human microglial can be modulated using ASOs in a dose-dependent manner to manipulate microglia phenotypes and response to neurodegeneration in vivo.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Oligonucleótidos Antisentido , Microglía/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Humanos , Oligonucleótidos Antisentido/farmacología , Animales , Ratones , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Células Madre Pluripotentes Inducidas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Modelos Animales de Enfermedad
3.
Sci Rep ; 14(1): 9458, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658633

RESUMEN

Male sex is a risk factor for colorectal cancer (CRC) with higher illness burden and earlier onset. Thus, we hypothesized that loss of chromosome Y (LOY) in the tumor micro-environment (TME) might be involved in oncogenesis. Previous studies show that LOY in circulating leukocytes of aging men was associated with shorter survival and non-hematological cancer, as well as higher LOY in CD4 + T-lymphocytes in men with prostate cancer vs. controls. However, nothing is known about LOY in leukocytes infiltrating TME and we address this aspect here. We studied frequency and functional effects of LOY in blood, TME and non-tumorous tissue. Regulatory T-lymphocytes (Tregs) in TME had the highest frequency of LOY (22%) in comparison to CD4 + T-lymphocytes and cytotoxic CD8 + T-lymphocytes. LOY score using scRNA-seq was also linked to higher expression of PDCD1, TIGIT and IKZF2 in Tregs. PDCD1 and TIGIT encode immune checkpoint receptors involved in the regulation of Tregs function. Our study sets the direction for further functional research regarding a probable role of LOY in intensifying features related to the suppressive phenotype of Tregs in TME and consequently a possible influence on immunotherapy response in CRC patients.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Linfocitos T Reguladores , Microambiente Tumoral , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/genética , Microambiente Tumoral/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Masculino , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Anciano , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/genética , Persona de Mediana Edad , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Femenino , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo
4.
Clin Transl Med ; 14(4): e1665, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38649789

RESUMEN

BACKGROUND: White matter injury (WMI) is an important pathological process after traumatic brain injury (TBI). The correlation between white matter functions and the myeloid cells expressing triggering receptor-2 (TREM2) has been convincingly demonstrated. Moreover, a recent study revealed that microglial sterol metabolism is crucial for early remyelination after demyelinating diseases. However, the potential roles of TREM2 expression and microglial sterol metabolism in WMI after TBI have not yet been explored. METHODS: Controlled cortical injury was induced in both wild-type (WT) and TREM2 depletion (TREM2 KO) mice to simulate clinical TBI. COG1410 was used to upregulate TREM2, while PLX5622 and GSK2033 were used to deplete microglia and inhibit the liver X receptor (LXR), respectively. Immunofluorescence, Luxol fast blue staining, magnetic resonance imaging, transmission electron microscopy, and oil red O staining were employed to assess WMI after TBI. Neurological behaviour tests and electrophysiological recordings were utilized to evaluate cognitive functions following TBI. Microglial cell sorting and transcriptomic sequencing were utilized to identify alterations in microglial sterol metabolism-related genes, while western blot was conducted to validate the findings. RESULTS: TREM2 expressed highest at 3 days post-TBI and was predominantly localized to microglial cells within the white matter. Depletion of TREM2 worsened aberrant neurological behaviours, and this phenomenon was mediated by the exacerbation of WMI, reduced renewal of oligodendrocytes, and impaired phagocytosis ability of microglia after TBI. Subsequently, the upregulation of TREM2 alleviated WMI, promoted oligodendrocyte regeneration, and ultimately facilitated the recovery of neurological behaviours after TBI. Finally, the expression of DHCR24 increased in TREM2 KO mice after TBI. Interestingly, TREM2 inhibited DHCR24 and upregulated members of the LXR pathway. Moreover, LXR inhibition could partially reverse the effects of TREM2 upregulation on electrophysiological activities. CONCLUSIONS: We demonstrate that TREM2 has the potential to alleviate WMI following TBI, possibly through the DHCR24/LXR pathway in microglia.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Glicoproteínas de Membrana , Microglía , Receptores Inmunológicos , Sustancia Blanca , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Microglía/metabolismo , Ratones , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Modelos Animales de Enfermedad , Masculino , Ratones Noqueados , Ratones Endogámicos C57BL
5.
Front Immunol ; 15: 1383110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650930

RESUMEN

Exhausted CD8 T cells (TEX) are associated with worse outcome in cancer yet better outcome in autoimmunity. Building on our past findings of increased TIGIT+KLRG1+ TEX with teplizumab therapy in type 1 diabetes (T1D), in the absence of treatment we found that the frequency of TIGIT+KLRG1+ TEX is stable within an individual but differs across individuals in both T1D and healthy control (HC) cohorts. This TIGIT+KLRG1+ CD8 TEX population shares an exhaustion-associated EOMES gene signature in HC, T1D, rheumatoid arthritis (RA), and cancer subjects, expresses multiple inhibitory receptors, and is hyporesponsive in vitro, together suggesting co-expression of TIGIT and KLRG1 may broadly define human peripheral exhausted cells. In HC and RA subjects, lower levels of EOMES transcriptional modules and frequency of TIGIT+KLRG1+ TEX were associated with RA HLA risk alleles (DR0401, 0404, 0405, 0408, 1001) even when considering disease status and cytomegalovirus (CMV) seropositivity. Moreover, the frequency of TIGIT+KLRG1+ TEX was significantly increased in RA HLA risk but not non-risk subjects treated with abatacept (CTLA4Ig). The DR4 association and selective modulation with abatacept suggests that therapeutic modulation of TEX may be more effective in DR4 subjects and TEX may be indirectly influenced by cellular interactions that are blocked by abatacept.


Asunto(s)
Abatacept , Alelos , Artritis Reumatoide , Linfocitos T CD8-positivos , Receptores Inmunológicos , Humanos , Abatacept/uso terapéutico , Abatacept/farmacología , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Artritis Reumatoide/genética , Masculino , Femenino , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Adulto , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Antígenos HLA/genética , Antígenos HLA/inmunología , Persona de Mediana Edad , Antirreumáticos/uso terapéutico , Predisposición Genética a la Enfermedad , Agotamiento de Células T
6.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38612763

RESUMEN

Idiopathic intellectual disability (IID) encompasses the cases of intellectual disability (ID) without a known cause and represents approximately 50% of all cases. Neural progenitor cells (NPCs) from the olfactory neuroepithelium (NEO) contain the same information as the cells found in the brain, but they are more accessible. Some miRNAs have been identified and associated with ID of known etiology. However, in idiopathic ID, the effect of miRNAs is poorly understood. The aim of this study was to determine the miRNAs regulating the expression of mRNAs that may be involved in development of IID. Expression profiles were obtained using NPC-NEO cells from IID patients and healthy controls by microarray. A total of 796 miRNAs and 28,869 mRNAs were analyzed. Several miRNAs were overexpressed in the IID patients compared to controls. miR-25 had the greatest expression. In silico analysis showed that ROBO2 was the target for miR-25, with the highest specificity and being the most down-regulated. In vitro assay showed an increase of miR-25 expression induced a decrease in ROBO2 expression. In neurodevelopment, ROBO2 plays a crucial role in episodic learning and memory, so its down-regulation, caused by miR-25, could have a fundamental role in the intellectual disability that, until now, has been considered idiopathic.


Asunto(s)
Discapacidad Intelectual , MicroARNs , Humanos , Discapacidad Intelectual/genética , MicroARNs/genética , Encéfalo , Regulación hacia Abajo/genética , Aprendizaje , ARN Mensajero , 60696 , Receptores Inmunológicos/genética
7.
Int J Biol Sci ; 20(6): 1992-2007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617547

RESUMEN

Objective: Osteoarthritis (OA) is the most prominent chronic arthritic disease, affecting over 3 billion people globally. Synovial macrophages, as immune cells, play an essential role in cartilage damage in OA. Therefore, regulating macrophages is crucial for controlling the pathological changes in OA. Triggering receptor expressed on myeloid cells 2 (TREM2), as expressed on immune cell surfaces, such as macrophages and dendritic cells, has suppressed inflammation and regulated M2 macrophage polarization but demonstrated an unknown role in synovial macrophage polarization in OA. This study aimed to investigate TREM2 expression downregulation in OA mice macrophages. Furthermore, the expression trend of TREM2 was associated with polarization-related molecule expression in macrophages of OA mice. Results: We used TREM2 knockout (TREM2-KO) mice to observe that TREM2 deficiency significantly exacerbated the joint inflammation response in OA mice, thereby accelerating disease progression. Separating macrophages and chondrocytes from TREM2-KO mice and co-cultivating them significantly increased chondrocyte apoptosis and inhibited chondrocyte proliferation. Further, TREM2 deficiency also significantly enhanced phosphatidylinositol 3-kinase(PI3K)/AKT signaling pathway activation, increasing nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling and C-X-C Motif Chemokine Ligand 3 (CXCL3) expression. Furthermore, NF-κB signaling pathway inhibition significantly suppressed arthritis inflammation in OA mice, thereby effectively alleviating TREM2 deficiency-related adverse effects on chondrocytes. Notably, knocking down CXCL3 of TREM2-KO mice macrophages significantly inhibits inflammatory response and promotes chondrocyte proliferation. Intravenous recombinant TREM2 protein (soluble TREM2, sTREM2) injection markedly promotes macrophage polarization from M1 to M2 and improves the joint tissue pathology and inflammatory response of OA. Conclusion: Our study reveals that TREM2 promotes macrophage polarization from M1 to M2 during OA by NF-κB/CXCL3 axis regulation, thereby improving the pathological state of OA.


Asunto(s)
FN-kappa B , Osteoartritis , Animales , Ratones , Quimiocinas CXC , Inflamación , Glicoproteínas de Membrana/genética , Osteoartritis/genética , Fosfatidilinositol 3-Quinasas , Receptores Inmunológicos/genética , Transducción de Señal/genética
8.
Cancer Biol Med ; 21(4)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38425216

RESUMEN

OBJECTIVE: The human cluster of differentiation (CD)300A, a type-I transmembrane protein with immunoreceptor tyrosine-based inhibitory motifs, was investigated as a potential immune checkpoint for human natural killer (NK) cells targeting hematologic malignancies (HMs). METHODS: We implemented a stimulation system involving the CD300A ligand, phosphatidylserine (PS), exposed to the outer surface of malignant cells. Additionally, we utilized CD300A overexpression, a CD300A blocking system, and a xenotransplantation model to evaluate the impact of CD300A on NK cell efficacy against HMs in in vitro and in vivo settings. Furthermore, we explored the association between CD300A and HM progression in patients. RESULTS: Our findings indicated that PS hampers the function of NK cells. Increased CD300A expression inhibited HM lysis by NK cells. CD300A overexpression shortened the survival of HM-xenografted mice by impairing transplanted NK cells. Blocking PS-CD300A signals with antibodies significantly amplified the expression of lysis function-related proteins and effector cytokines in NK cells, thereby augmenting the ability to lyse HMs. Clinically, heightened CD300A expression correlated with shorter survival and an "exhausted" phenotype of intratumoral NK cells in patients with HMs or solid tumors. CONCLUSIONS: These results propose CD300A as a potential target for invigorating NK cell-based treatments against HMs.


Asunto(s)
Neoplasias Hematológicas , Células Asesinas Naturales , Receptores Inmunológicos , Humanos , Células Asesinas Naturales/inmunología , Animales , Ratones , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/terapia , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Antígenos CD/metabolismo , Antígenos CD/inmunología , Masculino , Línea Celular Tumoral , Citotoxicidad Inmunológica , Fosfatidilserinas/metabolismo
9.
Nature ; 627(8005): 847-853, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38480885

RESUMEN

Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain mediate recognition of strain-specific pathogen effectors, typically via their C-terminal ligand-sensing domains1. Effector binding enables TIR-encoded enzymatic activities that are required for TIR-NLR (TNL)-mediated immunity2,3. Many truncated TNL proteins lack effector-sensing domains but retain similar enzymatic and immune activities4,5. The mechanism underlying the activation of these TIR domain proteins remain unclear. Here we show that binding of the TIR substrates NAD+ and ATP induces phase separation of TIR domain proteins in vitro. A similar condensation occurs with a TIR domain protein expressed via its native promoter in response to pathogen inoculation in planta. The formation of TIR condensates is mediated by conserved self-association interfaces and a predicted intrinsically disordered loop region of TIRs. Mutations that disrupt TIR condensates impair the cell death activity of TIR domain proteins. Our data reveal phase separation as a mechanism for the activation of TIR domain proteins and provide insight into substrate-induced autonomous activation of TIR signalling to confer plant immunity.


Asunto(s)
Adenosina Trifosfato , Arabidopsis , NAD , Tabaco , 60422 , Proteínas de Plantas , Dominios Proteicos , Adenosina Trifosfato/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Muerte Celular , Mutación , NAD/metabolismo , Tabaco/genética , Tabaco/inmunología , Tabaco/metabolismo , Proteínas NLR/química , Proteínas NLR/genética , Proteínas NLR/inmunología , Proteínas NLR/metabolismo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Dominios Proteicos/genética , Receptores Inmunológicos/química , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Receptores Inmunológicos/metabolismo , Transducción de Señal , Receptores Toll-Like/química , Receptores de Interleucina-1/química
10.
Biochim Biophys Acta Gen Subj ; 1868(5): 130596, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471632

RESUMEN

BACKGROUND: Clear cell Renal Cell Carcinoma (ccRCC) is the frequently diagnosed histological life-threatening tumor subtype in the urinary system. Integrating multi-omics data is emerging as a tool to provide a comprehensive view of biology and disease for better therapeutic interventions. METHOD: We have integrated freely available ccRCC data sets of genome-wide DNA methylome, transcriptome, and active histone modification marks, H3K27ac, H3K4me1, and H3K4me3 specific ChIP-seq data to screen genes with higher expression. Further, these genes were filtered based on their effect on survival upon alteration in expression. RESULTS: The six multi-omics-based identified genes, RUNX1, MSC, ADA, TREML1, TGFA, and VWF, showed higher expression with enrichment of active histone marks and hypomethylated CpG in ccRCC. In continuation, the identified genes were validated by an independent dataset and showed a correlation with nodal and metastatic status. Furthermore, gene ontology and pathway analysis revealed that immune-related pathways are activated in ccRCC patients. CONCLUSIONS: The network analysis of six overexpressed genes suggests their potential role in an immunosuppressive environment, leading to tumor progression and poor prognosis. Our study shows that the multi-omics approach helps unravel complex biology for patient subtyping and proposes combination strategies with epi-drugs for more precise immunotherapy in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Epigenoma , Perfilación de la Expresión Génica , Transcriptoma/genética , Microambiente Tumoral/genética , Receptores Inmunológicos/genética
11.
Cell Rep Med ; 5(3): 101450, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508139

RESUMEN

CD47 is a ligand of SIRPα, an inhibitory receptor expressed by macrophages, dendritic cells, and natural killer (NK) cells, and, therefore, transgenic overexpression of CD47 is considered an effective approach to inhibiting transplant rejection. However, the detrimental effect of CD47 signaling is overlooked when exploring this approach. Here, we construct a mutant CD47 by replacing the transmembrane and intracellular domains with a membrane anchor (CD47-IgV). In both human and mouse cells, CD47-IgV is efficiently expressed on the cell surface and protects against phagocytosis in vitro and in vivo but does not induce cell death or inhibit angiogenesis. Furthermore, hematopoietic stem cells expressing transgenic CD47-IgV show no detectable alterations in engraftment or differentiation. This study provides a potentially effective means of achieving transgenic CD47 expression that may help to produce gene-edited pigs for xenotransplantation and hypoimmunogenic pluripotent stem cells for regenerative medicine.


Asunto(s)
60489 , Antígeno CD47 , Animales , Humanos , Ratones , Antígeno CD47/genética , Antígeno CD47/metabolismo , Muerte Celular , Fagocitosis/genética , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Porcinos
12.
DNA Cell Biol ; 43(4): 197-205, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38466944

RESUMEN

Previous studies have shown that interferon gene-stimulating protein (STING) is essential for IFN-γ-inducible protein 16 (IFI16) as the DNA sensor and RNA sensor to induce transcription of type I interferon (IFN-I) and is essential for IFI16 to synergize with DNA sensor GMP-AMP (cGAMP) synthase (cGAS) in induction of IFN-I transcription. While other and our previous studies have shown that IFI16 enhanced retinoic acid-inducible gene I (RIG-I)-, which was an RNA sensor, and mitochondrial antiviral signaling (MAVS)-, which was the adaptor protein of RIG-I, induced production of IFN-I, so we wonder whether IFI16 regulates the signal pathway of RNA-RIG-I-MAVS-IFN-I in a STING-dependent manner. We used HEK 293T cells, which did not express endogenous STING and were unable to mount an innate immune response upon DNA transfection and found that IFI16 could enhance RIG-I- and MAVS-mediated induction of IFN-I in a STING-independent way. Furthermore, we found that upregulation of the expression of NF-kappa-B essential modulator (NEMO) by IFI16 was not the mechanism that IFI16 regulated the induction of IFN-I. In conclusion, we found that IFI16 regulated the signal pathway of RNA-RIG-I-MAVS-IFN-I in a STING-independent manner.


Asunto(s)
Inmunidad Innata , Interferón Tipo I , Proteína 58 DEAD Box/genética , ADN , Interferón Tipo I/genética , Receptores Inmunológicos/genética , ARN , Humanos
13.
Discov Med ; 36(182): 621-631, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38531803

RESUMEN

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) poses a significant threat to the quality of life for people worldwide. Regrettably, effective treatment strategies for this disease remain elusive in clinical practice due to the unclear understanding of its molecular mechanisms. Therefore, this study was devised to address these issues and identify novel diagnostic, therapeutic, and prognostic biomarkers for DLBCL. METHODS: Gene expression and clinical data for DLBCL patients were retrieved from The Cancer Genome Atlas (TCGA) database, and relevant clinical data, tumor mutational burden (TMB), and gene expression levels were extracted. Bioinformatics analysis was conducted to screen for differentially expressed genes (DEGs). The prognostic significance of flotillin-2 (FLOT2) was assessed using Kaplan-Meier survival analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analyses were employed to evaluate mRNA and protein levels of the genes. Cell proliferation, apoptosis, and invasion were assessed using cell counting kit-8 (CCK-8) assay, flow cytometry analysis, and Transwell assay, respectively. RESULTS: Our bioinformatics analysis revealed that FLOT2 was significantly overexpressed in DLBCL tissues compared to normal tissues, a finding corroborated by subsequent immunohistochemistry staining, qRT-PCR, and Western blot analyses. To elucidate its biological functions, shRNAs targeting FLOT2 were transfected into DLBCL cell lines (LY-3 and U2932), resulting in suppressed cell proliferation and invasion, while promoting apoptosis. Furthermore, a positive correlation between TMB and FLOT2 expression in DLBCL was observed. Subsequently, quanTIseq was utilized to calculate the immune score and assess FLOT2 gene expression. In DLBCL, FLOT2 gene expression was found to be associated with T cell CD4+ (non-regulatory) (p < 0.01), monocytes (p < 0.05), and uncharacterized cells (p < 0.05). Regarding immune checkpoint markers, including the cluster of differentiation 274 (CD274), cytotoxic T lymphocyte-associated antigen-4 (CTLA4), hepatitis A virus cellular receptor 2 (HAVCR2), lymphocyte activation gene-3 (LAG3), programmed cell death protein 1 (PDCD1), programmed cell death 1 ligand 2 (PDCD1LG2), Siglec-15 (SIGLEC15), and T cell immunoreceptor with Ig and ITIM domains (TIGIT), our analysis indicated that in DLBCL, FLOT2 exhibited a relationship only with TIGIT (p < 0.05). CONCLUSIONS: In summary, FLOT2 functions as an oncogene and is linked to DLBCL prognosis and the tumor microenvironment. Targeting FLOT2 deletion emerges as a novel strategy to impede DLBCL aggressiveness by inhibiting cell proliferation and invasion, ultimately inducing apoptotic cell death.


Asunto(s)
Linfoma de Células B Grandes Difuso , Proteínas de la Membrana , Calidad de Vida , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Biomarcadores de Tumor/análisis , Epigénesis Genética , Receptores Inmunológicos/genética , Microambiente Tumoral
14.
Theranostics ; 14(5): 2232-2245, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505612

RESUMEN

Rationale: Systemic sclerosis (SSc) is a chronic and incurable autoimmune disease with high mortality rates, and skin fibrosis is one of distinguishing hallmarks in the pathogenesis. However, macrophage heterogeneity regulating skin fibrosis remain largely unknown. Methods: We established mouse disease model and performed single-cell RNA-sequencing (scRNA-seq) to resolve the dynamic and heterogenous characteristics of macrophages in skin fibrosis, and the role of TREM2-dependent macrophages in the pathological process was investigated using knockout mice and intraperitoneal transferring TREM2+ macrophages combining with functional assays. Results: We show that TREM2-expressing macrophages (TREM2+ MФs) accumulate in injured skin of mice treated by bleomycin (BLM) and human SSc, and their gene signatures and functional pathways are identified in the course of disease. Genetic ablation of Trem2 in mice globally accelerates and aggravates skin fibrosis, whereas transferring TREM2hi macrophages improves and alleviates skin fibrosis. Amazingly, we found that disease-associated TREM2+ MФs in skin fibrosis exhibit overlapping signatures with fetal skin counterparts in mice and human to maintain skin homeostasis, but each has merits in skin remodeling and development respectively. Conclusion: This study identifies that TREM2 acts as a functional molecule and a major signaling by which macrophage subpopulations play a protective role against fibrosis, and disease-associated TREM2+ MФs in skin fibrosis might undergo a fetal-like reprogramming similar to fetal skin counterparts.


Asunto(s)
Macrófagos , Piel , Humanos , Animales , Ratones , Macrófagos/metabolismo , Fibrosis , Piel/patología , Bleomicina , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética
15.
Front Immunol ; 15: 1290564, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545097

RESUMEN

Background: Sepsis is one of the major causes of death and increased health care burden in modern intensive care units. Immune checkpoints have been prompted to be key modulators of T cell activation, T cell tolerance and T cell exhaustion. This study was designed to investigate the role of the negative immune checkpoint, T cell immunoglobulin and ITIM domain (TIGIT), in the early stage of sepsis. Method: An experimental murine model of sepsis was developed by cecal ligation and puncture (CLP). TIGIT and CD155 expression in splenocytes at different time points were assessed using flow cytometry. And the phenotypes of TIGIT-deficient (TIGIT-/-) and wild-type (WT) mice were evaluated to explore the engagement of TIGIT in the acute phase of sepsis. In addition, the characteristics were also evaluated in the WT septic mice pretreated with anti-TIGIT antibody. TIGIT and CD155 expression in tissues was measured using real-time quantitative PCR and immunofluorescence staining. Proliferation and effector function of splenic immune cells were evaluated by flow cytometry. Clinical severity and tissue injury were scored to evaluate the function of TIGIT on sepsis. Additionally, tissue injury biomarkers in peripheral blood, as well as bacterial load in peritoneal lavage fluid and liver were also measured. Results: The expression of TIGIT in splenic T cells and NK cells was significantly elevated at 24 hours post CLP.TIGIT and CD155 mRNA levels were upregulated in sepsis-involved organs when mice were challenged with CLP. In CLP-induced sepsis, CD4+ T cells from TIGIT-/- mice shown increased proliferation potency and cytokine production when compared with that from WT mice. Meanwhile, innate immune system was mobilized in TIGIT-/- mice as indicated by increased proportion of neutrophils and macrophages with potent effector function. In addition, tissue injury and bacteria burden in the peritoneal cavity and liver was reduced in TIGIT-/- mice with CLP induced sepsis. Similar results were observed in mice treated with anti-TIGIT antibody. Conclusion: TIGIT modulates CD4+ T cell response against polymicrobial sepsis, suggesting that TIGIT could serve as a potential therapeutic target for sepsis.


Asunto(s)
Sepsis , Linfocitos T , Animales , Ratones , Linfocitos T CD4-Positivos , Células Asesinas Naturales , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
16.
Respir Res ; 25(1): 72, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317180

RESUMEN

BACKGROUND: Pneumocystis pneumonia (PCP) is a life-threatening opportunistic fungal infection with a high mortality rate in immunocompromised patients, ranging from 20 to 80%. However, current understanding of the variation in host immune response against Pneumocystis across different timepoints is limited. METHODS: In this study, we conducted a time-resolved single-cell RNA sequencing analysis of CD45+ cells sorted from lung tissues of mice infected with Pneumocystis. The dynamically changes of the number, transcriptome and interaction of multiply immune cell subsets in the process of Pneumocystis pneumonia were identified according to bioinformatic analysis. Then, the accumulation of Trem2hi interstitial macrophages after Pneumocystis infection was verified by flow cytometry and immunofluorescence. We also investigate the role of Trem2 in resolving the Pneumocystis infection by depletion of Trem2 in mouse models. RESULTS: Our results characterized the CD45+ cell composition of lung in mice infected with Pneumocystis from 0 to 5 weeks, which revealed a dramatic reconstitution of myeloid compartments and an emergence of PCP-associated macrophage (PAM) following Pneumocystis infection. PAM was marked by the high expression of Trem2. We also predicted that PAMs were differentiated from Ly6C+ monocytes and interacted with effector CD4+ T cell subsets via multiple ligand and receptor pairs. Furthermore, we determine the surface markers of PAMs and validated the presence and expansion of Trem2hi interstitial macrophages in PCP by flow cytometry. PAMs secreted abundant pro-inflammation cytokines, including IL-6, TNF-α, GM-CSF, and IP-10. Moreover, PAMs inhibited the proliferation of T cells, and depletion of Trem2 in mouse lead to reduced fungal burden and decreased lung injury in PCP. CONCLUSION: Our study delineated the dynamic transcriptional changes in immune cells and suggests a role for PAMs in PCP, providing a framework for further investigation into PCP's cellular and molecular basis, which could provide a resource for further discovery of novel therapeutic targets.


Asunto(s)
Glicoproteínas de Membrana , Neumonía por Pneumocystis , Receptores Inmunológicos , Animales , Ratones , Inmunidad , Inflamación/metabolismo , Pulmón/microbiología , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Neumonía por Pneumocystis/genética , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
17.
Cancer Res Commun ; 4(2): 505-515, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38319147

RESUMEN

In normal cells, binding of the transmembrane protein CD47 to signal regulatory protein-α (SIRPα) on macrophages induces an antiphagocytic signal. Tumor cells hijack this pathway and overexpress CD47 to evade immune destruction. Macrophage antitumor activity can be restored by simultaneously blocking the CD47-SIRPα signaling axis and inducing a prophagocytic signal via tumor-opsonizing antibodies. We identified a novel, fully human mAb (BMS-986351) that binds SIRPα with high affinity. BMS-986351 demonstrated broad binding coverage across SIRPα polymorphisms and potently blocked CD47-SIRPα binding at the CD47 binding site in a dose-dependent manner. In vitro, BMS-986351 increased phagocytic activity against cell lines from solid tumors and hematologic malignancies, and this effect was markedly enhanced when BMS-986351 was combined with the opsonizing antibodies cetuximab and rituximab. A phase I dose-escalation/-expansion study of BMS-986351 for the treatment of advanced solid and hematologic malignancies is underway (NCT03783403). SIGNIFICANCE: Increasing the phagocytotic capabilities of tumor-associated macrophages by modulating macrophage-tumor cell surface signaling via the CD47-SIRPα axis is a novel strategy. Molecules targeting CD47 have potential but its ubiquitous expression necessitates higher therapeutic doses to overcome potential antigen sink effects. The restricted expression pattern of SIRPα may limit toxicities and lower doses of the SIRPα antibody BMS-986351 may overcome target mediated drug disposition while maintaining the desired pharmacology.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Humanos , Antígeno CD47/genética , Receptores Inmunológicos/genética , Fagocitosis , Macrófagos , Neoplasias/tratamiento farmacológico , Anticuerpos Antineoplásicos/metabolismo , Proteínas Opsoninas/metabolismo , Neoplasias Hematológicas/metabolismo
18.
World J Gastroenterol ; 30(4): 421-423, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38313233

RESUMEN

According to the latest global cancer statistics, colorectal cancer (CRC) has emerged as the third most prevalent malignant tumor across the globe. In recent decades, the medical field has implemented several levels of CRC screening tests, encompassing fecal tests, endoscopic examinations, radiological examinations and blood tests. Previous studies have shown that leukocyte immunoglobulin-like receptor B2 (LILRB2) is involved in inhibiting immune cell function, immune evasion, and promoting tumor progression in acute myeloid leukemia and non-small cell lung cancer. However, its interaction with CRC has not been reported yet. Recently, a study published in the World Journal of Gastroenterology revealed that LILRB2 and its ligand, angiopoietin-like protein 2, are markedly overexpressed in CRC. This overexpression is closely linked to tumor progression and is indicative of a poor prognosis. The study highlights the potential of utilizing the concentration of LILRB2 in serum as a promising biomarker for tumors. However, there is still room for discussion regarding the data processing and analysis in this research.


Asunto(s)
Neoplasias Colorrectales , Glicoproteínas de Membrana , Receptores Inmunológicos , Humanos , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/metabolismo , Glicoproteínas de Membrana/genética , Transducción de Señal , Biomarcadores de Tumor/metabolismo , Receptores Inmunológicos/genética
19.
Nat Commun ; 15(1): 308, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302456

RESUMEN

Cell-surface receptors play pivotal roles in many biological processes, including immunity, development, and reproduction, across diverse organisms. How cell-surface receptors evolve to become specialised in different biological processes remains elusive. To shed light on the immune-specificity of cell-surface receptors, we analyzed more than 200,000 genes encoding cell-surface receptors from 350 genomes and traced the evolutionary origin of immune-specific leucine-rich repeat receptor-like proteins (LRR-RLPs) in plants. Surprisingly, we discovered that the motifs crucial for co-receptor interaction in LRR-RLPs are closely related to those of the LRR-receptor-like kinase (RLK) subgroup Xb, which perceives phytohormones and primarily governs growth and development. Functional characterisation further reveals that LRR-RLPs initiate immune responses through their juxtamembrane and transmembrane regions, while LRR-RLK-Xb members regulate development through their cytosolic kinase domains. Our data suggest that the cell-surface receptors involved in immunity and development share a common origin. After diversification, their ectodomains, juxtamembrane, transmembrane, and cytosolic regions have either diversified or stabilised to recognise diverse ligands and activate differential downstream responses. Our work reveals a mechanism by which plants evolve to perceive diverse signals to activate the appropriate responses in a rapidly changing environment.


Asunto(s)
Evolución Biológica , Plantas , Plantas/genética , Receptores Inmunológicos/genética , Filogenia , Receptores de Reconocimiento de Patrones/genética
20.
Crit Rev Eukaryot Gene Expr ; 34(3): 27-36, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38305286

RESUMEN

This study aimed to investigate the T cell immunoreceptor with ITIM and Ig domains (TIGIT) expression in lung adenocarcinoma (LUAD). TIGIT expression was measured by western blot, reverse transcription quantitative polymerase chain reaction. Seventy-two paired surgical specimens were collected from patients with stage I-IV LUAD. The expression of TIGIT in surgical specimens was determined using immunohistochemistry. TIGIT was overexpressed in LUAD tissues. Moreover, overexpressed TIGIT was significantly associated with advanced clinical staging, lymph node metastasis, distant metastasis, and TP53 mutations in LUAD. Moreover, high expression of TIGIT was negatively correlated with purity of CD4+ T cells. High rations of TIGIT+CD4+ T cells predicted poor overall survival of LUAD patients. Additionally, high ratios of TIGIT+CD4+ T cells is closely related to CD4+ T cell depletion. Taken together, TIGIT was overexpressed in LUAD patients. High levels of TIGIT induced the alteration of CD4+ T cell based immunomodulation and predicted poor prognosis of LUAD patients. Therefore, TIGIT can be potential biomarker for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Relevancia Clínica , Expresión Génica Ectópica , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Neoplasias Pulmonares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...